ข้อมูลงานวิจัย

รูป :
ประเภท :
กายภาพและสิ่งแวดล้อมกายภาพ
หมวดหมู่ :
หัวข้องานงานวิจัย (Eng) :
Assessing the reforestation effects of plantation plots in the Thai savanna based on 45 cm resolution true-color images and machine learning
หัวข้องานงานวิจัย (ไทย) :
ชื่อแหล่งเผยแพร่:
Environmental Research Letters
เอกสาร:
ภาษาอังกฤษ
พื้นที่ศึกษา :
Land Degradation and Rehabilitation
ปี ค.ศ./พ.ศ. :
2021/2564
ช่วงเวลางานวิจัย (เริ่ม-สิ้นสุด) :
2016-2019
ผลลัพธ์การวิจัย :
บทความ
ลักษณะของเอกสาร :
ฉบับสมบูรณ์
ประเภทงานวิจัย :
กายภาพและสิ่งแวดล้อมกายภาพ

ชื่อสถาบัน/หน่วยงาน :
Faculty of Social-Human Environmentology, Daito Bunka University
ชื่อหน่วยงานความร่วมมือ :
ชื่อหน่วยงานผู้ให้ทุน :

วัตถุประสงค์งานวิจัย :
To quantify the effects of plantation tree species on ecosystem restoration in Sakaerat, Thailand where the natural vegetation is tropical dry evergreen forest

Keywords :
Land Degradation; Savanna; 2016 drought in Thailand; ISODATA clustering; Vegetative Succession; NDVI; NDWI
บทคัดย่อ :
In forest restoration projects, assessing progress is critically important. This study was conducted to quantify the restoration progress for approximately 30 year old plantation plots of Acacia and Pterocarpus in Sakaerat, Thailand. For 22.5 x 22.5 m areas in the plantation plots, as a continuous measure of forest restoration, dry evergreen forest-likelihood was determined using 45 cm resolution satellite images and an artificial neural network architecture. The Acacia plot achieved a moderate mean evergreen forest likelihood of 0.451 (April 2016) to 0.679 (May 2019), but the values for the Pterocarpus plot were 0.076 or smaller. Two other Pterocarpus plots at cooler and moister sites had mean evergreen forest-likelihood values of up to 0.884 (April 2016), which were significantly greater than that (0.451) for the Acacia plot, but the values dropped in May 2019. Throughout the period of the four image acquisition times from March 2014 to May 2019, the plantation plots had significantly smaller evergreen forest-likelihood than the dry evergreen forest did. The current approach would be a helpful option for stakeholders of forest management by applying sub-m-resolution images and machine learning followed by quantification of the forest restoration effects relying on the appearance and texture of tree canopies at multiple data acquisition times.
เอกสารอ้างอิง :
Doi, R. (2021). Assessing the reforestation effects of plantation plots in the Thai savanna based on 45 cm resolution true-color images and machine learning. Environmental Research Letters, 16(1), 014030.

ไฟล์แนบงานวิจัย :

รูปภาพประกอบ :

สิ่งมีชีวิตที่เกี่ยวข้อง

ลำดับ รูป ชื่อวิทยาศาสตร์ ไฟลัม ชั้น อันดับ วงศ์ สกุล



สถานีวิจัยสิ่งแวดล้อมสะแกราช (สสส.)
Sakaerat Environmental Research Station
Sakaerat Biosphere Reserve.


  • 1 หมู่ 9 ต.อุดมทรัพย์ อ.วังน้ำเขียว
    จ.นครราชสีมา 30370 ประเทศไทย


  • 09 8219 5570, 06 1102 1707


  • sakaerat@tistr.or.th



Copyright © 2024, All Right Reserved.